GPU-Accelerated Algorithms for Compressed Signals Recovery with Application to Astronomical Imagery Deblurring

نویسندگان

  • Attilio Fiandrotti
  • Sophie Fosson
  • Chiara Ravazzi
  • Enrico Magli
چکیده

Compressive sensing promises to enable bandwidth-efficient on-board compression of astronomical data by lifting the encoding complexity from the source to the receiver. The signal is recovered off-line, exploiting GPUs parallel computation capabilities to speedup the reconstruction process. However, inherent GPU hardware constraints limit the size of the recoverable signal and the speedup practically achievable. In this work, we design parallel algorithms that exploit the properties of circulant matrices for efficient GPU-accelerated sparse signals recovery. Our approach reduces the memory requirements, allowing us to recover very large signals with limited memory. In addition, it achieves a tenfold signal recovery speedup thanks to ad-hoc parallelization of matrix-vector multiplications and matrix inversions. Finally, we practically demonstrate our algorithms in a typical application of circulant matrices: deblurring a sparse astronomical image in the compressed domain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of the direction of arrival estimation algorithms by means of GPU-parallel processing in the Kuda environment (Research Article)

Direction-of-arrival (DOA) estimation of audio signals is critical in different areas, including electronic war, sonar, etc. The beamforming methods like Minimum Variance Distortionless Response (MVDR), Delay-and-Sum (DAS), and subspace-based Multiple Signal Classification (MUSIC) are the most known DOA estimation techniques. The mentioned methods have high computational complexity. Hence using...

متن کامل

Gradient projection methods for image deblurring and denoising on graphics processors

Optimization-based approaches for image deblurring and denoising on Graphics Processing Units (GPU) are considered. In particular, a new GPU implementation of a recent gradient projection method for edge-preserving removal of Poisson noise is presented. The speedups over standard CPU implementations are evaluated on both synthetic data and astronomical and medical imaging problems.

متن کامل

Inexact alternating direction method based on Newton descent algorithm with application to Poisson image deblurring

The recovery of images from the observations that are degraded by a linear operator and further corrupted by Poisson noise is an important task in modern imaging applications such as astronomical and biomedical ones. Gradient-based regularizers involve the popular total variation semi-norm have become standard techniques for Poisson image restoration due to its edgepreserving ability. Various e...

متن کامل

An Accelerated Proximal Gradient Algorithm for Frame-Based Image Restoration via the Balanced Approach

Frame-based image restoration by using balanced approach has been developed over the last decade. Many recently developed algorithms for image restoration can be viewed as an acceleration of the proximal forward-backward splitting algorithm. Accelerated proximal gradient algorithms studied by Nesterov, Nemirovski, and others have been demonstrated to be efficient in solving various regularized ...

متن کامل

Motion-Adaptive Spatio-Temporal Regularization (MASTeR) for Accelerated Dynamic MRI

Accelerated MRI techniques reduce signal acquisition time by undersampling k-space. A fundamental problem in accelerated MRI is the recovery of quality images from undersampled k-space data. Current state-of-the-art recovery algorithms exploit the spatial and temporal structures in underlying images to improve the reconstruction quality. In recent years, compressed sensing theory has helped for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1707.02244  شماره 

صفحات  -

تاریخ انتشار 2017